CS 4700:
Foundations of Artificial Intelligence

Prof. Bart Selman
selman(@cs.cornell.edu

Machine Learning:
Neural Networks

R&N 18.7
Backpropagation

Backpropagation

In order to learn multi-layer neural nets,
we need another learning algorithm.

(invented ca. 1984)
A multi-layer net has one or more hidden layers.

We will consider the backpropagation
algorithm for training such networks.
See also R&N. Here we will present a more
detailed example.

Based on Nilsson (Stanford)

Note that in the perceptron case, we looked
at the output value, compared it to the desired
value and changed the weights accordingly.

We want to multi-layer

Luckily, we can approximate those errors by
“backpropagating” the final output error.

To do so, we need an activition function that
is differentiable.

We use the sigmoid function to compute
our output values.

flz) = 1+1e—-’”

The derivative of f(z) is:

f'(z) = f(z) x (1 - f(z))

0.8

0.6

0.4

0.2

Sigmoid s(2)
Derivative s'(z)

Weighted sum

Note: largest derivative at x = 0
That’s where neuron is most sensitive
to weight changes (effect of changes is
well “controlled”).

Output value of neuron is simply the
weighted sum of its input “pushed” through
the sigmoid.

f(s) = —, where

14+e—%?

. k=n-+1

Again, we assume the threshold is replaced
by an extra input fixed at 1. Inputs: 0 or 1.

First layer J-th layer (k-1)-th layer k-th layer

0 1 f) (k-1)
(0) (1) l XU X

X X

m, sigmoids m; sigmoids mg_y, sigmoids

Figure 3.5

A k-layer Network of Sigmoid Units

OK... details backpropagation
NOT on exam.

Setup and notation:
But do work through gradient

k-layer network. descent example on homework.

Input vector:

X0 =< 2V 20 Lz >

The first layer has m, units and its output is:

X(l) — e f(l) (1) B f(l) >

The weights for the zth unit in the first layer are
given by:

W(l) =< w(l) (1) ...,wf,}{),,z- >

These outputs XV are fed into the
second layer of ms units.
The number of units in the j-th

layer is m;.

In general, the weight vector of unit ¢ in the j-th layer is W;(j)
with components w{z for [=1,mg_1) + 1.
Note that the previous layer had m(;_1) units
(and thus outputs) all connected to each unit in the
j-th layer. We use one additional weight and fixed input
to model the threshold. (Not given on previous slide.)

The weighted sum of the inputs to i-th sigmoid unit

in the j-th layer is denoted by s\’

1
The output is f7) = =—

1+e i

We have:
s :X(?‘l) . HRJ')

We used the vector dot product, i.e.,

(.7) z ;n(J—l)'*'l (G-1) ,wl(JJ)
(J—)

is the output of unit / in the

previous layer. It’s connected with weight w(])

to the i-th unit in the j-th layer.

10

Note: again, concerning the “+1” here, we assume that an
extra “1” is added to the input vector and an extra
weight, to model the threshold.

Finally, the k-th layer is the output layer.
It has a single unit with input s (weighted
sum) and output value f*) = f.

11

The objective of the backprogation algorithm is

to minimize the output error on each example.

That is, we want to minimize:

(L —f)?

Where, L the label (0 or 1) of the input example
under consideration and f is the output of the
network given that example.

Note: we will update the weights after each example

rnative approach considers the combin

rror over the total training set and update after

les. In the limit the a are the same.

12

A key observation is that the error (L — f)? is
only a function of the weights.
Note: the number of units etc. is fixed.
Also, the inputs are fixed, since we are considering
a particular example.

The idea is now to do a gradient descent in the
weight space to minimize the error.

The derivation (basically calculus) is somewhat

involved but not difficult.

It’s “just” multivariate (or multivariable) calculus.

13

Note:
For descent
we want to

__ 80 in opposite
“Idirection of
gradient.

Consider

x and y our
two weights
and f(x,y) S S
the error R e
signal.

90 %N

The gradient of the function f(x,y) = -(coszx + coszy)2 depicted &J
as a projected vector field on the bottom plane.

Multi-layer

network: P f 8]"
composition V f 5 — ey + - a
of sigmoids; 1‘1 T,
use chain rule.

14

Gradient descent is based on the
observation that if the multivariable
function F(x) is defined and
differentiable in a neighborhood of
a point a, then F’ (x) decreases
fastest if one goes from A in the
direction of the negative gradient of

Fata, —VF (a) It follows
that, if

b=a—-~VF(a)
for 7Y small enough, then
F(a) > F(b) With this S
observation in mind, one starts with

a guess Xg for a local minimumof x,,.; = x,, — 7, VF(x,), n > 0.
F', and considers the sequence e have

Xp, X1, X2, .. .such that F(Xo) > F(Xl) > F(Xg) > ..

so hopefully the sequence (X,) converges to the desired local minimum.

Here we just give the results of the calculation.

First, the weight adjustment for the single unit

in the output layer is

WEW® L ax@(d—f) x fx(1—f)x X&ED

Note: f is the output of the unit; d is desired output.

This rule is analogous to the perceptron rule, except
that we are now using the sigmoid.

The (d — f) is the error signal.

« is the learning rate (a constant chosen by the user).

f x (1 — f) comes from the derivative of the sigmoid.

X *=1) is the input to the unit under consideration.

16

So, again we're adding (subtracting) the input vector,
depending on (d — f).

Please check for yourself that the correction is
in the right direction!

We're basically going to do something similar
for the weights in the hidden layer. The only problem
is that we don’t have a direct measure of the error

in the outputs on the hidden units.

17

Starting with the final layer and moving backwards,
we compute for the i-th unit in the j-th layer:
5i(j) _ fzJ(fJ) a1 5(J+1) z(Jl+1)

Note that fz-(J) is the output value of the unit.
So, the ¢ for a unit in the i-th layer is
computed by considering the delta in the 7 + 1-th layer.

The base case is the output layer k&:

6M) =(@d—f)x fx(1-

I.e., the real output error times the gradient.

This values is propagated backwards @

for the internal units (times the gradient again).

18

Finally, using these 4’s, we can compute the
weight updates for the hidden units:
G),_) iy pU Y
W — W 4+a x] x X
Verify that this rule is consistent with the

update rule for the final node. (Check j = k;
drop %, since only one unit in layer.)

So, first we “backpropagate” the error
signal to get the gradient, and then we update the weights,
layer by layer.

That’s why it’s called “backprop learning.”
Now changing speech recognition, image

recognition etc.!
19

Although, the rules are somewhat intuitive, only
by doing the full derivation, can one explain
all the terms.

Let us consider an example of the procedure
In action.

20

Trace example!

X1

/
Figure 3.6 /™
A —
A Network to
Be Trained by
Backprop x3=1

21

We have two layers (k = 2).
Two units in first layer, with a total

of three inputs (:1:&0), a:go), :1::(30)).

z{") will be fixed to 1.
The two units in the first layer are connected

to a node in the final layer. This node

has three inputs: (azgl), a:gl), asgl)).
:cgl) is the output of the 1st unit in the 1st layer.
a:gl) is the output of the 2nd unit in the 2nd layer.
a:f(;l) is fixed at 1.

Note the given weights in the figure.

22

We want to train the network to capture the
following patterns:

ex1) z” =128 =0,2z{ =1,d=0
ex2) z” =0,z =0,z =1,d =1
ex 3.) 2\ =0, :1:(0)—1) =1,d=0
ex 4.) :1:()—1 :z:(o)—l x(o)zl,dzl

Again, d is the desired output; a:() is the fixed unit.

Let’s consider the update after the first pattern.

23

Ex 1.) gives input vector < 1,0,1 >, which leads via
the sigmoid to the following output values:

1

1; ; = L, =0.881
1 1

2 — 1+e_0 — 0.5

_ 1 -
f - 1+e—(3x0.881+(—2)x0.5_1) — 0665

24

We now compute the values for the d’s.
First the base case:

62 = (0 — 0.665) x 0.665 x (1 —0.665) = —0.148
Backpropagating through the weights gives:

oY = 0.881 x (1 — 0.881) x (—0.148 x 3) = —0.047
057 = 0.5 x (1 —0.5) x (—0.148 x —2) = 0.074

Double-check at least one of these!

25

After computing the é’s, we can now update the weights.
(Use learning rate @ = 1.) We get for the new weights:

W=« 1.953, —2.0, —0.047 >
WiV =< 1.074, 3.0, —0.926 >
W@ =< 2.870, —2.074, —1.148 >

26

Aside: the original weights were:
W =< 2.0.-2.0.0.0 >

W, =< 1.0.3.0.-1.0 >

W =< 3.0,-2.0,—1.0 >

27

Let’s do an example calculation of the first weight vector.
— (1)
W7 =< 1.953,-2.0,—-0.047 >

wi] = wif + (1 x 6} x z1”)
— 2+ (1 x (—0.047) x 1) = 1.953

w§12) — w§12) + (1 x 6] x 3))
—2 4+ (1 x (—0.047) x 0) = —2.0

§§+(1x51xx3))
=04 (1 x (—0.047) x 1) = —0.047

o
||

28

Let’s do the calculation of the third weight vector.

W(2)=< 2.870, —2.074, ~1.148 > w'® = w{® + (1 x 6? x 2{")
=34 (1 x (—0.148) x 0.881)

= 2.870
w§2) = w§2) + (1 x 6% x a:gl)) Etc.
= 2+ (1 x (—0.148) x 0.5)
— _ 9074 Tedious but
)) .o “just” gf‘adient
wy” =ws’ +(1x0%xz3") descent in the
=—1+ (1 x (-0.148) x 1) weight space,

= —1.148 after all.

29

Good news...

- —o---——___.Students in artificial intelligence are “worth somewhere
between $5 million and $10 million to a company’s bottom line,” said

Andrew Moore, dean of CMU’s School of Computer Science.

Wall Street Journal, 11/24/16

30

Summary ©

A tour of Al:
) Al
--- motivation
--- overview of the field

II) Problem-Solving
—--- problem formulation using state space
— (initial state, operators, goal state(s))
—-- search techniques
--- adversarial search

31

Summary, cont.

III) Knowledge Representation and Reasoning
--- logical agents
--- Boolean satisfiability (SAT) solvers

--- first-order logic and inference

V) Learning
—-- decision tree learning (info gain)
--- reinforcement learning (intro)

--- neural networks / deep learning (gradient descent)

The field has grown (and continues to grow) exponentially but you
have now seen a good part!

Thanks & Have a great winter break!!!!

32

